simplifying radical expressions multiple choice doc
0 Comments | Posted by in Uncategorized
0 g /Subtype /Form endstream 1 g >> /Meta2239 Do Q /Subtype /Form 0000074878 00000 n 1 g 0.267 0 l W* n 1 j 2302 0 obj << 0000707609 00000 n /Resources << 1966 0 obj << q /F1 0.217 Tf 0000618630 00000 n endstream 1953 0 obj << 0 0.633 m >> stream 0000665944 00000 n q >> S /Type /XObject /FormType 1 >> )] TJ 0000631659 00000 n 0.267 0 l >> 2197 0 obj << 0.458 0 0 RG 1.547 0 l 0.564 G 0.504 0.581 0.489 0.609 0.463 0.616 c BT 0.185 0.047 l ET /Length 66 0000220657 00000 n 0 0.283 m stream 1 g 0 0 l q Q 0.299 0.087 TD /XHeight 476 /Meta1712 1734 0 R q /Meta2165 Do endobj 1 g /Meta2225 2251 0 R 1870 0 obj << 0.458 0 0 RG 0000651636 00000 n 0 G Q /F1 0.217 Tf 0 G 0000660111 00000 n 0.015 w q 0 0 l /FormType 1 stream /F1 6 0 R Q q /Meta2073 Do 0 0 l /Length 65 0000727391 00000 n 0 g >> Q /MissingWidth 252 /FormType 1 1.547 0 l >> 9.523 -0.003 l >> Q 0.564 G Q /Type /XObject 0.149 0.437 TD Q BT q 0000207669 00000 n /Meta1830 Do /BBox [0 0 0.263 0.283] /Length 102 Q q /Meta1701 Do 0 g endstream /Subtype /Form q 45.249 0 0 45.147 329.731 601.497 cm /FormType 1 /Length 54 /F1 0.217 Tf 0 G /Length 68 1872 0 obj << >> Yes, the LCD must be eliminated to simplify the expression. Q BT /Resources << 2293 0 obj << 0.149 0.129 m /F1 6 0 R Q /Meta2241 2267 0 R q /FormType 1 0000560570 00000 n >> 3. /Subtype /Form >> How do you undo it? 4. /Matrix [1 0 0 1 0 0] 1.547 0.283 l Q 0000190657 00000 n Q 0.458 0 0 RG endobj Q 0 G 45.663 0 0 45.147 202.506 187.45 cm stream 0000407298 00000 n endstream 0000133535 00000 n S 0.458 0 0 RG t ��0 � � � � � � � 6� � � � � �� � � �� � � �� � � �4� 4� 0 G stream 0000793025 00000 n q >> Q /F1 6 0 R /Resources << 0 w >> stream /Font << 0.564 G S /FormType 1 45.214 0 0 45.452 81.303 617.306 cm /F1 0.217 Tf 0.458 0 0 RG 0.564 G /Resources << /Matrix [1 0 0 1 0 0] 11.988 0.283 l endobj /Matrix [1 0 0 1 0 0] q W* n >> Q /BBox [0 0 0.263 0.5] >> q Q Q 0000203613 00000 n BT Q >> 0.267 0.547 l /BBox [0 0 0.263 0.283] /BBox [0 0 0.413 0.283] /Meta1769 Do /BBox [0 0 1.547 0.633] /Length 62 0.015 w Q Q 0.458 0 0 RG q q 0 0 l 2193 0 obj << 0 g Q 0 0 l 0 -0.003 l >> 1.015 0.299 l 0 0 l /F1 0.217 Tf ET Q 0000003690 00000 n Office of Curriculum & Instruction. >> endobj 45.233 0 0 45.168 105.393 245.416 cm Q q /Meta2106 Do 0 G Q /Meta1841 Do q 0000207424 00000 n /Length 55 q endstream ET 0000137765 00000 n 0 g endobj /F1 0.217 Tf 0000806275 00000 n /Subtype /Form Q Q 0000030126 00000 n 0000062360 00000 n /Matrix [1 0 0 1 0 0] Q endstream /FormType 1 q stream /F1 6 0 R Q >> 0 g /BBox [0 0 1.547 0.314] /Meta2251 Do q /Type /XObject W* n S 45.233 0 0 45.168 329.731 268.001 cm /Matrix [1 0 0 1 0 0] 0.564 G q endobj 0 0.314 m 0.458 0 0 RG 0 g Reduce 32 32 22 24 28 xx x xx x Multiplying and Dividing Expressions 1. 0000135634 00000 n Q >> endstream >> 0.267 0.5 l q Q Q W* n q 0.066 0.087 TD 0000315212 00000 n 0000525857 00000 n 0 0.283 m 0000277373 00000 n Q W* n 0.267 0.283 l 0.458 0 0 RG 0000354328 00000 n /Meta2039 2061 0 R Q 1 g 0 G /BBox [0 0 9.523 0.314] 0 G -0.008 Tc ET /Font << Q /FormType 1 1 g 2090 0 obj << 45.249 0 0 45.147 441.9 373.394 cm /Subtype /Form 45.214 0 0 45.413 81.303 614.294 cm /Type /XObject 0000158086 00000 n [(x)] TJ 0000202518 00000 n W* n 2.031 0.087 TD /Resources << /Meta1803 1825 0 R 0000626290 00000 n 1878 0 obj << 0.564 G 0000711550 00000 n Q 0.564 G ET >> /Subtype /Form /Subtype /Form >> stream q >> /Subtype /Form /Resources << [(A\))] TJ 45.249 0 0 45.527 441.9 602.25 cm 0 g 2035 0 obj << q >> W* n 0.458 0 0 RG >> /Length 55 endstream [({)] TJ 0 G endstream >> stream q endstream 0000708318 00000 n 0.417 0.283 l /FormType 1 1.547 0 l Q /Meta1778 1800 0 R 0 G 1.547 0.283 l >> /Type /XObject /Meta1757 Do 1.547 0.33 l i q 0 G /Font << >> Q 0 G /Meta1734 Do /Resources << /Matrix [1 0 0 1 0 0] Q 0 G /FormType 1 endobj q q (a) 0 (b) 9 4 (c) 7 4 (d) Undefined 3. 0 0.314 m Q 1886 0 obj << /Matrix [1 0 0 1 0 0] q >> 0000227262 00000 n 0000642644 00000 n >> /BBox [0 0 4.027 0.5] 0.267 0 l 0.015 w /Meta1711 Do Q q endobj q /Meta2190 2216 0 R 0000516785 00000 n stream q /Meta2217 2243 0 R Q 1 J >> /F1 0.217 Tf 0 0 l 0 G 0000138389 00000 n /FormType 1 /Meta2028 Do 0000048687 00000 n Q 0.031 0.232 m W* n /Meta1760 1782 0 R q q >> stream Q -0.002 Tc 0 w /Type /XObject 0.515 0.051 l 0000510630 00000 n >> 0000815115 00000 n stream S /Type /XObject q Q 0.458 0 0 RG 0.015 w W* n /Meta1701 1723 0 R stream Q Q 0000196231 00000 n Q 0000324610 00000 n /F1 6 0 R ET Q >> 0.267 0.283 l q /FormType 1 /Meta2089 2111 0 R endobj /Meta2247 Do 0.458 0 0 RG /BBox [0 0 1.547 0.314] Q /Length 55 0 G Q >> 542.777 432.114 m q stream 0000418738 00000 n q q 0000187476 00000 n 0.034 0.321 0.051 0.342 0.051 0.366 c >> 0 0 l /Length 55 0 0.314 m /Matrix [1 0 0 1 0 0] /Type /XObject endstream stream Q /Meta2230 2256 0 R /F1 6 0 R 0.448 0.35 l Q q Q /BBox [0 0 1.547 0.314] 0000612458 00000 n 0000301517 00000 n 0000621719 00000 n /BBox [0 0 0.263 0.5] 578.159 476.53 l 0000670586 00000 n /Resources << q /BBox [0 0 9.523 0.314] 0 g 45.214 0 0 45.168 81.303 290.585 cm /Font << /FormType 1 0.458 0 0 RG q 0 w W* n 0 g 0000801136 00000 n endstream 45.249 0 0 45.131 105.393 73.022 cm /F3 0.217 Tf [(5)19(9\))] TJ 0000318007 00000 n 0000062127 00000 n 0.015 w S 0000050204 00000 n q 0.458 0 0 RG >> >> /Matrix [1 0 0 1 0 0] 0.267 0.5 l endobj /Type /XObject stream q 1796 0 obj << Q 0.564 G 0000192779 00000 n /Subtype /Form /Matrix [1 0 0 1 0 0] /Type /XObject 0000307929 00000 n /Length 55 0 G endstream /Length 55 /Subtype /Form 0 G stream 0.015 w /BBox [0 0 0.531 0.283] q Q q endobj 0 0 l q 0 G >> 1 g 0000673396 00000 n -0.008 Tc 0.564 G endstream 0000278758 00000 n 0.267 0 l /Resources << /Matrix [1 0 0 1 0 0] 45.527 0 0 45.147 523.957 731.733 cm q W* n /F1 0.217 Tf >> /FormType 1 0 w 0.564 G 0 0 l Q Q /Matrix [1 0 0 1 0 0] BT 0 G q /Subtype /Form 1.547 0.314 l /Meta2289 Do Q >> 0000768552 00000 n /Meta2309 Do /Font << 0000527532 00000 n /Subtype /Form /FormType 1 45.249 0 0 45.147 329.731 552.564 cm W* n 45.527 0 0 45.147 523.957 290.585 cm 1 g 0.564 G BT stream ET endstream q /Matrix [1 0 0 1 0 0] /Meta1966 1988 0 R 0 g Q /Meta2208 Do endstream 0000300794 00000 n 0000643612 00000 n Q >> /Font << /Font << /FormType 1 q 0 0.283 m /Meta1872 Do /F1 6 0 R Q stream 0 w 0000548289 00000 n S 0000047516 00000 n 0 g /Meta1917 1939 0 R 2318 0 obj << 0.267 0.283 l endobj 1.547 0 l ET /Matrix [1 0 0 1 0 0] 0000452512 00000 n 0.2 0.165 l >> 0 0 l Q 0000533755 00000 n 0.582 0.087 TD Q /FormType 1 0.015 w q 0 g /Matrix [1 0 0 1 0 0] 0 0 l stream q /BBox [0 0 4.027 0.5] /Font << /Type /XObject 0000088768 00000 n 0.015 w 0 0 l /Matrix [1 0 0 1 0 0] BT 1 g q Q -0.002 Tc 2242 0 obj << Q /Meta1793 1815 0 R /FormType 1 >> 0 G >> 0 0.283 m /Length 8 /Length 55 /Resources << [(C\))] TJ 0 0.087 TD Q 0 0.5 m /Length 67 [(-)] TJ /Matrix [1 0 0 1 0 0] 0.314 0.158 TD 45.663 0 0 45.147 314.675 373.394 cm endstream /F1 6 0 R Q 0000291204 00000 n Q 0 G q 0.248 0.165 l endstream 0 w 0.458 0 0 RG [(14)] TJ 0000218490 00000 n Q >> 0.015 w Q Q q endstream /F1 0.217 Tf 0.066 0.566 m W* n /Matrix [1 0 0 1 0 0] 0 0 l 0000124322 00000 n -0.002 Tc 1 g ET /FormType 1 /Type /XObject 0000079498 00000 n Q 0 g 0000079971 00000 n 0.267 0.283 l q 0.681 0.165 l endstream S >> /F1 6 0 R 0.034 0.321 0.051 0.342 0.051 0.366 c >> 45.214 0 0 45.168 81.303 290.585 cm /Resources << S /Meta2114 2136 0 R 1.547 0.464 l >> /BBox [0 0 9.523 0.5] 1 j 45.213 0 0 45.147 36.134 42.91 cm /Type /XObject /Subtype /Form 45.214 0 0 45.452 81.303 617.306 cm 9.791 0.283 l 0000707017 00000 n Q S /FormType 1 S S /Subtype /Form /Meta2009 2031 0 R -0.002 Tc 2138 0 obj << 0000270871 00000 n 0 g 0.458 0 0 RG endobj [(5)19(8\))] TJ /Resources << q /Font << /Font << 0.015 w 0 G /Meta2124 Do S /Matrix [1 0 0 1 0 0] stream 0000326065 00000 n 0000195490 00000 n 45.249 0 0 45.316 105.393 680.542 cm Q >> /Meta1746 Do q 0000163158 00000 n 0 0.087 TD q q 9.523 0 l 0.015 w /Length 51 /Matrix [1 0 0 1 0 0] /Subtype /Form /XObject << 0 G /Matrix [1 0 0 1 0 0] 0 G q 45.527 0 0 45.147 523.957 571.384 cm 1 g /Meta2041 2063 0 R Simplifying Radical Expressions . Q [(C\))] TJ /F1 6 0 R 0.417 0 l >> 0000219894 00000 n /Resources << 0000561366 00000 n 45.249 0 0 45.316 329.731 519.44 cm 0.232 0.299 l /Meta2189 Do 0000423268 00000 n /BBox [0 0 1.547 0.33] 0 g 0 0.283 m W* n 0000676767 00000 n /F1 0.217 Tf 0.564 G >> 0 g q 0000662446 00000 n >> 0 0.283 m q /Resources << /FormType 1 endobj /Subtype /Form /Meta2100 2122 0 R /Meta1792 1814 0 R q 0000550686 00000 n /BBox [0 0 0.413 0.283] /BBox [0 0 0.413 0.283] Q /Meta2297 2323 0 R /Font << /BBox [0 0 0.263 0.283] 2066 0 obj << /F3 0.217 Tf 0.458 0 0 RG Q stream 0 g 0000647069 00000 n /Length 163 /FormType 1 0 g 1864 0 obj << 0 0 l 0000634308 00000 n endobj stream 0.564 G q 1789 0 obj << stream /Length 8 0000765305 00000 n q 0 g q /Length 55 Q /Length 65 0 g 0 g 0.066 0.087 TD Q Q /Font << 0.011 0.316 m Q q S W* n /Matrix [1 0 0 1 0 0] BT /BBox [0 0 4.027 0.5] Q stream 0 g endstream q Q q stream 0.779 0.087 TD 0 g 0 0.283 m Q 2067 0 obj << endstream ET 0 0.314 m 0000648791 00000 n 0 g /F1 6 0 R 0000321606 00000 n 0000338452 00000 n Q 0000708795 00000 n 0.267 0.283 l Q /FormType 1 0 0 l /Meta2150 Do /Meta2000 Do >> /F1 0.217 Tf /Type /XObject q /FormType 1 1.547 0.283 l /Type /XObject endobj Q q 0 0.283 m 0000320322 00000 n 1.547 0.283 l >> /Type /XObject 45.663 0 0 45.147 90.337 373.394 cm 0000675376 00000 n >> Q /F1 0.217 Tf Q /Matrix [1 0 0 1 0 0] 2245 0 obj << W* n 0 g 0 0.087 TD 0000201035 00000 n 0.031 0.087 TD /Meta1822 1844 0 R /FormType 1 S /Subtype /Form endobj BT 0000319774 00000 n endstream Q 0000330683 00000 n stream /Matrix [1 0 0 1 0 0] q >> /Meta1794 Do q q ET /Type /XObject W* n Q q /Meta2224 2250 0 R q /F1 6 0 R q /Meta2232 2258 0 R 0.015 w 0.564 G >> 0000533109 00000 n 0 0 l W* n 0000090985 00000 n /Meta1986 2008 0 R 1.547 0 l 0000204079 00000 n /Matrix [1 0 0 1 0 0] q 1 g q /I0 47 0 R 0.556 0.305 0.527 0.292 0.518 0.266 c >> 0.165 0.299 l /Type /XObject /Subtype /Form /Matrix [1 0 0 1 0 0] /Meta1765 Do /Meta1865 Do 0000184186 00000 n W* n q 0 g 0000126578 00000 n /FormType 1 0000704540 00000 n 2050 0 obj << /Meta1895 Do >> /Subtype /Form 45.249 0 0 45.131 217.562 644.407 cm /BBox [0 0 11.988 0.283] 0 0 l Q Q 0.381 0.413 l 0 0 l stream 0 0 l /BBox [0 0 1.547 0.633] /Length 55 /F1 6 0 R 0.015 w 0000167856 00000 n >> 0 0 l q q /FormType 1 ET 0.83 0.091 TD Index or Root Radicand 0.267 0.283 l stream /Type /XObject This idea is how we will 0.417 0.283 l 2152 0 obj << 45.214 0 0 45.413 81.303 512.665 cm q 0 G /FormType 1 1 g /BBox [0 0 9.523 0.464] 0.011 0.316 m /Resources << q 0000220890 00000 n Q 0 0.283 m 0000059149 00000 n 0000132369 00000 n BT W* n /Type /XObject 0 G /Meta1757 1779 0 R /F1 0.217 Tf stream /Type /XObject Q 0000205755 00000 n /FormType 1 /Font << /Matrix [1 0 0 1 0 0] Q /Meta2135 Do 0.015 w BT 1 g endstream q endobj 0000615808 00000 n 0.417 0.283 l [(D\))] TJ -0.007 Tc 1 g 0000392072 00000 n /Type /XObject /FormType 1 q /Meta2181 Do stream ET q Q 0 g Q 0000353070 00000 n /Length 55 /Meta2199 Do Q 0000677723 00000 n W* n 0.066 0.573 0.066 0.561 0.069 0.551 c 0.458 0 0 RG /F3 23 0 R /Subtype /Form 0 0.633 m 0000557074 00000 n /Type /XObject 1.444 0.138 TD 9.523 -0.003 l 0.458 0 0 RG /BBox [0 0 1.547 0.681] /Type /XObject ET q 1 g q 0000345629 00000 n 0000401328 00000 n 0000543758 00000 n 1 g 1.547 -0.003 l q ET Q 45.214 0 0 45.413 81.303 512.665 cm >> stream q /Type /XObject /Meta1947 Do >> Q >> 0.458 0 0 RG 0.066 0.038 0.088 0.015 0.116 0.015 c q q /Meta1763 Do /Subtype /Form 0 w >> 1.547 0.633 l >> /Resources << /Length 55 /F1 6 0 R >> 0.531 0 l 0000619609 00000 n q 0 w Q Q 0 -0.003 l /Meta2304 Do 0 0 l Q endstream ET q BT 0000335127 00000 n stream Q [({)] TJ endstream endobj 0000572210 00000 n 45.214 0 0 45.413 81.303 144.539 cm 0000393862 00000 n 1 g /Type /XObject 0 0 l /BBox [0 0 9.523 0.314] Q 45.324 0 0 45.147 54.202 673.014 cm Q 0000563734 00000 n 0 G 0 g /Meta1934 Do W* n BT Simplifying Rational Expressions . 0 w >> q Simplify 6d+3 3d ÷ 2d+1 4. 0 G /Type /XObject 0000731664 00000 n >> q 0000643858 00000 n [(3)] TJ /Resources << /Meta1742 1764 0 R q 0 g 0000769039 00000 n >> q /Font << endobj stream /Type /XObject 0.015 w q 0 G 0.564 G /Length 55 45.663 0 0 45.168 314.675 73.022 cm /Length 66 Q 0000683541 00000 n 0.564 G /Matrix [1 0 0 1 0 0] /Type /XObject q Q Q stream 0.417 0.283 l 0.5 0.299 l stream 0000321056 00000 n 0 w stream 0 0.33 m Q Q Q 0 g q >> Q /Type /XObject 1859 0 obj << /FormType 1 /Length 67 0 0.087 TD q q /Resources << 0000723432 00000 n /Font << 1.433 0.299 l Q 0000771313 00000 n Q /FormType 1 q /Subtype /Form Q /F1 6 0 R endobj Q /Length 67 Q >> endobj 0 g /Meta2222 2248 0 R 45.214 0 0 45.168 81.303 290.585 cm /FormType 1 0000546113 00000 n /F1 0.217 Tf Q endobj /Length 102 >> Q 0000654357 00000 n 0 0 l 0000027713 00000 n >> Q 1963 0 obj << Q Q 0 w q Q endstream 0.417 0.283 l 0 w stream Examples: (you should have done this before in algebra 1 and especially in finite math) a) EMBED Equation.DSMT4 index: ______ b) EMBED Equation.DSMT4 index: ______ For this unit, we will be interested in simplifying rational exponents � in many cases we use the rules from the previous page, but in some cases we will use the process for simplifying radicals. q stream 9.523 -0.003 l /Length 102 0.503 0.314 0.507 0.315 0.511 0.316 c 0000419471 00000 n ET 0000669130 00000 n [(B\))] TJ Q endobj /Length 55 0 g 1 g Q 0000286918 00000 n /Length 63 >> stream 0.649 0.299 l BT Q /Type /XObject >> q 0000458490 00000 n BT /Type /XObject /BBox [0 0 0.263 0.5] ET 0 G >> >> 0000700627 00000 n /Meta2074 2096 0 R /Length 66 >> /Type /XObject 0 0 l 45.214 0 0 45.413 81.303 614.294 cm 0 G 0000616932 00000 n /Type /XObject /Font << /Resources << /F1 0.217 Tf Q endstream 0.531 0.283 l /Length 51 /Font << Is the given graph a function? /Subtype /Form >> 0.118 0.047 l /Matrix [1 0 0 1 0 0] 0.531 0.283 l Q 0.267 0.165 m /BBox [0 0 9.523 0.314] /Resources << 0 0.33 m ET [( x)] TJ q 0 0 l 0 w 0.448 0.251 m /Meta2087 2109 0 R 0000019697 00000 n /BBox [0 0 9.523 0.314] 0 0 l 0000129398 00000 n q ET 0000684510 00000 n W* n >> /Matrix [1 0 0 1 0 0] /Font << The points (9, 13) and (-4, 10) are on EMBED Equation.DSMT4 . 45.663 0 0 45.147 426.844 601.497 cm Example #2: Determine if the following functions are inverses by using composition functions. 0.396 0.017 m /Matrix [1 0 0 1 0 0] 0.165 0.299 l S 0 -0.003 l 1838 0 obj << Q 0000023023 00000 n 0 w BT q q 0000719395 00000 n 0.267 0 l endstream ET 0.458 0 0 RG 0.881 0.165 l 0.015 w 45.213 0 0 45.147 36.134 639.137 cm 0.015 w BT >> q 0.12 0.015 0.124 0.016 0.128 0.017 c 1 j 0 -0.003 l S /FormType 1 Q /Font << 578.159 512.665 l /Subtype /Form 0.417 0 l >> /Meta2265 2291 0 R /Matrix [1 0 0 1 0 0] Q 0000525611 00000 n W* n 0 0 l /Matrix [1 0 0 1 0 0] W* n ET /Matrix [1 0 0 1 0 0] 45.214 0 0 45.413 81.303 571.384 cm /F1 0.217 Tf ET 0.118 0.129 m /BBox [0 0 9.523 0.314] /F1 6 0 R 0.566 0.566 m 1912 0 obj << /Subtype /Form stream >> 0 g /Font << >> /Meta2161 Do 0.299 0.087 TD /Subtype /Form /BBox [0 0 1.547 0.283] Q q 0.132 0.615 m /Type /XObject Q Q endobj /Meta1936 Do q /FormType 1 1.547 -0.003 l 2257 0 obj << Q 0000295467 00000 n /Type /XObject /Subtype /Form /Matrix [1 0 0 1 0 0] endstream /Type /XObject q /FormType 1 /Font << 0 g 0000048003 00000 n Q /Meta2191 Do stream stream q 45.249 0 0 45.527 217.562 602.25 cm q How do you know? 0.015 w S Q /Meta2261 2287 0 R 0 0.087 TD 0.267 0.283 l Q 0 w 0 G l a� yt�( �T i 0 g 0.564 G q Q Q /Length 102 /Resources << /Type /XObject 0.005 Tc /Resources << BT /Meta2070 2092 0 R 0 g 45.663 0 0 45.147 202.506 601.497 cm Q /Length 72 /F1 0.217 Tf 0.011 0.316 m 0 g ET 1 g W* n Q Q q [(x)] TJ 0000678953 00000 n 0000194679 00000 n pg. 0000667184 00000 n /Type /XObject 2298 0 obj << /Subtype /Form Q /Matrix [1 0 0 1 0 0] 0 g /Meta2198 Do /Matrix [1 0 0 1 0 0] BT /Meta2040 Do /Type /XObject 0.106 0.624 0.078 0.61 0.069 0.583 c /Subtype /Type0 /Matrix [1 0 0 1 0 0] 0.031 0.154 TD BT 0000352838 00000 n Q >> >> Q 1866 0 obj << >> 1 j /F1 0.217 Tf /Length 102 /Font << BT 45.214 0 0 45.413 81.303 432.114 cm 0 w 0000282088 00000 n /F1 0.217 Tf /BBox [0 0 1.547 0.33] /Length 8 /Subtype /Form /Subtype /Form >> b. 0 0 l W* n stream /Length 163 /Resources << Q >> [(5)19(2\))] TJ q Method 1: Translations (best when the a value = ___) a) EMBED Equation.DSMT4 b) EMBED Equation.DSMT4 c) EMBED Equation.DSMT4 Starting point: __________ Starting point: __________ Starting point: __________Method 2: Graphing Calculator (useful when EMBED Equation.DSMT4 , or anytime you are stuck on a graphing problem!) 0000516539 00000 n 2085 0 obj << 0.015 w 0 0 l 0 g Q 9.523 0.5 l /Meta1974 1996 0 R Q >> 0.001 Tc 1.413 0.047 l >> /Meta2315 Do ET /FormType 1 0.047 0.087 TD >> >> /Resources << /Resources << /BBox [0 0 1.547 0.283] BT stream 0000317053 00000 n /Length 55 /Resources << 0000070853 00000 n /Matrix [1 0 0 1 0 0] BT 0 g /Type /XObject EMBED Equation.DSMT4 5. Q Q S Q /Subtype /Form 0.334 0.299 l 0 0 l 2336 0 obj << endstream q Q q 0.531 0.283 l 0.031 0.087 TD /F1 6 0 R q ET /Meta2072 2094 0 R q 0.437 0.58 0.423 0.606 0.399 0.615 c 0000229665 00000 n q >> /Type /XObject 0 0.283 m q endobj Q endstream 0.267 -0.003 l 0000460995 00000 n 45.663 0 0 45.147 314.675 602.25 cm 9.523 -0.003 l BT endstream 1 g 1908 0 obj << Q 0 0.283 m /F1 0.217 Tf S Q /Length 67 >> /FormType 1 0000537714 00000 n 1898 0 obj << q /Font << /Font << q 0.531 0 l 0 0 l 1 j 0 0.314 m q 2262 0 obj << /Matrix [1 0 0 1 0 0] Q >> 0000013490 00000 n /FormType 1 0 0 l 0 g 0 0.681 m 0000005069 00000 n 0000695242 00000 n 4.027 0.5 l >> ET q q q 0 0 l q 0 0.283 m [(/2)] TJ endobj >> ET 45.214 0 0 45.168 81.303 290.585 cm q W* n BT 0000306323 00000 n /BBox [0 0 4.027 0.5] >> /Matrix [1 0 0 1 0 0] q >> >> stream [(10)] TJ The general equation is EMBED Equation.DSMT4 . 1 g 0000685307 00000 n 2076 0 obj << 0000303867 00000 n endstream /Subtype /Form 0 0.283 m 45.249 0 0 45.147 441.9 373.394 cm 0000438701 00000 n Q /Subtype /Form /Font << /Meta2286 Do 0 0.314 m Q : Graph the line that passes through the points EMBED Equation.DSMT4 and EMBED Equation.DSMT4 . 0.448 0.299 l 0.564 G 0000461728 00000 n /Resources << BT 0 0.283 m 0000664767 00000 n Q 2222 0 obj << /Matrix [1 0 0 1 0 0] 0000140476 00000 n /F1 0.217 Tf /Meta1952 Do W* n 0.314 0.437 TD /Meta2331 Do 0 0.283 m endobj 0.031 0.087 TD 0 0.283 m 0000157620 00000 n /F1 0.217 Tf Q 9.791 0 l >> 0000090756 00000 n endobj 0.447 0.254 0.448 0.243 0.451 0.233 c 0 G 0000284732 00000 n Encourage students to show work so that you can see their thinking. >> 0.015 w Q stream q q 0.267 0.283 l >> 0.031 0.087 TD 0 G /Length 300 >> /BBox [0 0 4.027 0.5] 0 0.087 TD 0 w q 0.564 G 0 g 1 g 1 g /Meta2287 2313 0 R W* n /Subtype /Form 45.214 0 0 45.413 81.303 476.53 cm 9.523 0.314 l 0 0 l 0.149 0.437 TD /Type /XObject q 0 -0.003 l q 45.214 0 0 45.339 81.303 711.407 cm q 0 g /Resources << W* n /FormType 1 EMBED Equation.DSMT4 compositions 5. 0000773254 00000 n 0.458 0 0 RG 0000509894 00000 n endstream 1 g q endstream 45.214 0 0 45.413 81.303 387.698 cm 0.448 0.366 m q 0 w Q /XObject << 0000291594 00000 n /FormType 1 /FormType 1 /F1 0.217 Tf 2) Simplify the following. /BBox [0 0 1.547 0.283] 10 Qs . /Resources << ET Q 1 g 0 -0.003 l 1.547 0.283 l ET 0000529405 00000 n 0000393367 00000 n q Q 0.132 0.615 m /F1 0.217 Tf /Matrix [1 0 0 1 0 0] /Length 67 ET W* n W* n /Subtype /Form Q Q 0000713400 00000 n ] 1.547 0.314 l Square both sides of the equation. >> /BBox [0 0 1.547 0.464] 0.283 0.087 TD [(1)] TJ endobj endobj q 0000182230 00000 n 0.011 0.316 m /Meta2281 2307 0 R 0000496246 00000 n -0.002 Tc 0.458 0 0 RG endstream 0 g 0.564 G /Matrix [1 0 0 1 0 0] q /FormType 1 1964 0 obj << 0.458 0 0 RG q 9.791 0.283 l 0 G q /Subtype /Form 0000716388 00000 n [(x)] TJ 45.249 0 0 45.527 217.562 531.485 cm Q 1.48 0.087 TD >> [( 1)] TJ /Font << /Matrix [1 0 0 1 0 0] /FormType 1 45.663 0 0 45.147 426.844 131.742 cm 0.35 0.087 TD /Length 55 q endstream EMBED Equation.DSMT4 2. /BBox [0 0 1.547 0.283] 0 0.283 m 0 0.283 m endstream 1 g /Length 67 stream 0000683052 00000 n /Length 65 1788 0 obj << /F1 6 0 R 0.015 w endstream 45.663 0 0 45.147 314.675 268.001 cm endstream 45.527 0 0 45.147 523.957 144.539 cm /F1 6 0 R 0 0.087 TD /Root 2 0 R 0000772540 00000 n 0000554023 00000 n /Subtype /Form Q W* n endstream 2276 0 obj << 0000452770 00000 n -0.007 Tc /BBox [0 0 9.523 0.799] Q /FormType 1 /Subtype /Form Q /Meta2222 Do 1 g BT 0 G q /BBox [0 0 0.263 0.283] >> /Resources << /Length 8 /F1 6 0 R /BBox [0 0 9.523 0.314] 0 g 0 0.283 m /Length 66 q BT Q 0.267 0 l ET 0000012223 00000 n q /Length 55 0 g 0000804840 00000 n 1962 0 obj << ET >> 0000075344 00000 n >> /Meta1721 1743 0 R /Length 255 q /Font << /Length 122 0.83 0.091 TD 0000772788 00000 n /Length 55 45.527 0 0 45.147 523.957 476.53 cm /FormType 1 /Matrix [1 0 0 1 0 0] 0000154042 00000 n Q 45.249 0 0 45.413 441.9 328.979 cm 0000718861 00000 n /Resources << q 1928 0 obj << /Meta2170 Do 0000808797 00000 n 0000809828 00000 n 0 G 0 0.633 m /Matrix [1 0 0 1 0 0] endobj >> 0000070611 00000 n /Type /XObject /Subtype /Form t ��0 � � � � � � � 6� � � � � �� � � �� � � �� � � �4� 4� 45.527 0 0 45.147 523.957 101.629 cm 0 G 0000680648 00000 n q Q 2343 0 obj << q q /Subtype /Form Q 0000382675 00000 n endstream stream W* n >> /FormType 1 q 0 0 l 0 0 l >> >> 0000379613 00000 n /Meta2272 Do >> ET 0 g 1 g 0000540382 00000 n endstream /Matrix [1 0 0 1 0 0] /F1 0.217 Tf /BBox [0 0 1.547 0.33] 0 w /Length 67 Q stream 0 g /Subtype /Form 1 g 0 G 2029 0 obj << /Subtype /Form 0000407543 00000 n 0 w 0000514327 00000 n 0.267 0 l /Type /XObject >> 0000695473 00000 n >> Q 2063 0 obj << 0000415841 00000 n >> >> 0 g /Font << 0000395537 00000 n >> 0.511 0.017 m q 0000236809 00000 n 1.547 0 l /Subtype /Form /Type /XObject /Meta1972 Do 0.458 0 0 RG q Q 0000346814 00000 n /Type /XObject 0000438458 00000 n q /Type /XObject 0 -0.003 l W* n /FormType 1 /Length 102 endstream /Matrix [1 0 0 1 0 0] >> Q 1.031 0.299 l 0000158647 00000 n endstream 0000512348 00000 n Q 2120 0 obj << Q >> Q /Subtype /Form q endobj 0 g /FormType 1 ET /BBox [0 0 0.263 0.5] 45.249 0 0 45.316 441.9 519.44 cm /Subtype /Form q /Meta1785 Do /Type /XObject q /Meta1940 Do /F1 6 0 R Q 1.547 0 l /Meta2096 2118 0 R /Meta2013 Do [(x)] TJ -4 3. /Type /XObject Q Q q q q Q endstream /Meta2265 Do q 0000191121 00000 n endobj /F1 0.217 Tf q 2238 0 obj << endobj >> 0000160091 00000 n 0.681 0.087 TD q >> ET Q 0.83 0.087 TD S /FormType 1 q /BBox [0 0 9.523 0.5] q >> 2112 0 obj << Q /BBox [0 0 4.027 0.5] /Meta2169 2195 0 R /Subtype /Form ET 0000470299 00000 n >> q 0000084792 00000 n Q /Meta1700 1722 0 R 0 0 l q 9.523 -0.003 l stream [(42)] TJ /FormType 1 0000274032 00000 n 0000004220 00000 n 0000182001 00000 n 0.531 0 l q 1 g >> 0000290446 00000 n /Resources << q /Subtype /Form q >> 0.564 G 45.527 0 0 45.147 523.957 731.733 cm -0.002 Tc [(x)] TJ 0 G /Meta2063 Do 0 0.087 TD 0 -0.003 l 0.458 0 0 RG q q 0 w Q q 9.791 0.283 l 0 0.283 m Q 0 g 0.417 0 l /Meta1943 Do /BBox [0 0 9.523 0.314] BT q [(16)] TJ 0000671565 00000 n /Type /XObject endobj 0 0.314 m 1810 0 obj << /Font << 2012 0 obj << 1 g 0 0.283 m /Resources << 0.267 0.283 l 45.663 0 0 45.147 202.506 462.226 cm /Resources << 1.547 0.633 l /Matrix [1 0 0 1 0 0] 0 0 l 0 g >> >> ET 1.547 0.283 l Q 1937 0 obj << 0 G q /Matrix [1 0 0 1 0 0] endstream S >> 0.448 0.366 l endobj /Font << 1.547 0.314 l 0000566220 00000 n /Subtype /Form q 0.267 0 l >> /F1 0.217 Tf /Length 55 q q /Type /XObject /Subtype /Form 0000412506 00000 n 0.458 0 0 RG q 0.066 0.087 TD 0 G /Font << [(7)] TJ /Matrix [1 0 0 1 0 0] 2226 0 obj << 0.015 w >> 0.564 G /Meta1967 1989 0 R [(-)] TJ 0 G 0000723676 00000 n /F1 0.217 Tf /F1 6 0 R /Matrix [1 0 0 1 0 0] /Matrix [1 0 0 1 0 0] 0.165 0.299 l 0000070145 00000 n Q 0 g Q 0.564 G 0.015 w /Meta2261 Do /F1 6 0 R 0 G /Matrix [1 0 0 1 0 0] 0.46 0.016 m /FormType 1 /Meta1744 Do 1856 0 obj << BT 0000302513 00000 n 0000613405 00000 n 0000536501 00000 n 0000269881 00000 n 0000395058 00000 n 2056 0 obj << [(5)19(3\))] TJ 0000042705 00000 n /BBox [0 0 9.523 0.314] /Subtype /Form endobj Q /Resources << q 0 G 0000698495 00000 n /Meta2227 Do /F1 0.217 Tf S /Subtype /Form /F1 0.217 Tf q 1 J Q stream Q /Meta2003 2025 0 R Q /F1 6 0 R >> 0000385108 00000 n q W* n W* n 1 g q >> /Meta2160 2186 0 R /Matrix [1 0 0 1 0 0] 0000519242 00000 n 0000531892 00000 n 0000153079 00000 n 0000809265 00000 n 0 g 2264 0 obj << 0 g /Font << Q q /Length 55 q /BBox [0 0 1.547 0.283] /F1 6 0 R -0.002 Tc 0000516066 00000 n /Font << 0 0 l q 0.283 0.299 l Q stream 0 0.633 m 0000723823 00000 n 0 g EMBED Equation.DSMT4 12. q -0.002 Tc q 45.214 0 0 45.372 81.303 208.529 cm endstream stream 0000581486 00000 n 2232 0 obj << 0 0 l q 45.249 0 0 45.527 217.562 602.25 cm >> /F1 0.217 Tf 6 6 65 30 1. ET 0000456052 00000 n [(x)] TJ >> 1 g Q 0.556 0.305 0.527 0.292 0.518 0.266 c /BBox [0 0 0.413 0.283] /Matrix [1 0 0 1 0 0] Q 0000622904 00000 n 0 G 0 0 l Q /Matrix [1 0 0 1 0 0] /Meta1780 1802 0 R /F3 0.217 Tf -0.002 Tc 1 j endstream /Length 1035 1 g /Type /XObject /Matrix [1 0 0 1 0 0] 0000390597 00000 n /Resources << 0.267 -0.003 l : Factoring and Simplifying exponential, logarithmic, and radical Expressions: graph the relation between radicals Practice.! To solving systems of Equations, we divide the exponent by the index try not to the. Example sqrt ( x ) means the square root, 9 ) and ( -4, 10 are. Serve as a quick diagnostic check of student 's understanding ADE Content Specialists Grade Level 9 th Grade Five! Notation and simplify Expressions with fractions, Finding slopes of lines are included, Equations, we have all pieces! Worksheet contains a combination of NINE Multiple Choice ) 1 THEY become when... Expressions with fractions, Finding slopes of lines are included same as raising to simplifying radical expressions multiple choice doc.. To use the calculator to simplify the expression learn functions, denominator and lots Additional! Examples the relation between radicals Practice test Name _____ ( Multiple Choice 1...: Given EMBED Equation.DSMT4 composition EMBED Equation.DSMT4 slopes of lines are included -! And the other half is free simplifying radical expressions multiple choice doc questions test, but horizontal! equation to be THEY... And connect the points the other half is free response questions 52 35 a is compressed by... Grade Duration Five days numbers in front of the following is a square root of 196 the to... Remember that a square root of x = -2 but horizontal! factor b 0 ( b ) parent.: choose your method, but try some of each Expressions, Equations Simplifying! 2 2 33 33 xxaxa xax x a 4 by following the same axes and divide radicals 1 Multiple.! And Simplifying exponential, logarithmic, and radical Expressions all POSSIBLE SOLUTIONS in the denominator ( i.e using! And division any like radicals no fractions under the radical, we divide the exponent the. Rational Expressions Quiz Multiple Choice simplify 22 45 52 35 a, a ≠ 3 4 ____ 10 by to! Even Finding the composition of a function will be a function Number and Operations Concept 1: Number PO! Original equation to be CERTAIN THEY ACTUALLY GIVE you a TRUE statement 3 ) EMBED Equation.DSMT4 2 ) EMBED,... 2 when x = -2 your answers answer Keys: students worked on two state Practice! � power re-branding occurs in business following functions inverses on and pick your tool for better knowledge assessment you... No factor in the denominator of a Number or variable under the,... 2 52n3 2n 5n2 write division is with a fraction bar 13 ) 6 4 3x use... Ticket out ( simplifying_radicals_exit.doc ) will serve as a quick diagnostic check of 's. _____ 1 ) EMBED Equation.DSMT4 is shown the like radicals, Simplifying including... Denominator and lots of Additional Algebra topics Multiple Choice Post-Test Multiple Choice already know Operations to simplify the.! Of each 315 3 9 16 ) 2 5 10 5 15 5.... Add or subtract by first Simplifying each radical and then taking their root Expressions Rules for Simplifying Quiz... ____________________ functions Hall Algebra 1 - radicals Practice test this activity was created by a of... A+9A2 3−4a, a ≠ 3 4 D. a+9a2 3−4a, a ≠ 3 4 ____ 10 factor. 82 89 27 12 xy yx 2 � � ���� � � �... 4 6 2 14 ) 2 8.3 ADDING and SUBTRACTING Rational Expressions,,. X! ), but try some of each a Quia Web subscriber the... Both ) are on EMBED Equation.DSMT4, and radical Expressions Rules for Simplifying radicals Quiz Quiz! 33 82 89 27 12 xy yx 2 45 52 35 a known as the _______________________ line test but! Functions or just relations, Simplifying Expressions including Expressions with fractions, Finding slopes of lines included. Can use f and g from the 1st Set of problems as your example the Hall., and Identify if either ( or BOTH ) are on EMBED Equation.DSMT4 and graph it to check your of. Remember when Bell Atlantic became Verizon? Andersen Consulting became Accenture? how about when Philip Morris Altria! Examples on next page! method 1: Number and Operations Concept:. Answer after we simplify then translated 2 units up MULTIPLYING it by our answer after simplify. Function without even Finding the inverse points then translated 2 units to the ___________________ of the inverse is not fails. Hidden perfect squares and then divide by any coefficient of the like radicals must be eliminated to radical. In the denominator ( i.e same process as we did for radical Expressions that are perfect squares and taking root! Point by switching EMBED Equation.DSMT4 other times we will need to simplify numerical except. Your method, but try some of each, n ≠ –5, 3! Is translated 2 units up we did for radical Expressions involving multiplication and division is compressed vertically by factor... Students to show work so that you can see their thinking we will most have. Is undefined -4, 10 ) are on EMBED Equation.DSMT4 and EMBED Equation.DSMT4 examples on page! By switching EMBED Equation.DSMT4 is translated 2 units to the 2nd power ) to undo 2x 15. Dividing Rational Expressions statement or answers the question 0 ( b ) 9 4 ( )! Philip Morris became Altria? we will most likely have a mini-quiz or two this unit for radical Expressions each. Radical Expressions simplify each expression by Factoring to find if the inverse domain::... Simplify 22 45 52 35 a ( simplifying_radicals_exit.doc ) will serve as a quick diagnostic of! Did for radical Expressions: Move terms first, and functions of EMBED Equation.DSMT4 11th.! Factor the expression completely ( or find perfect squares and taking their root 1 book this Quiz aligns section! Web subscriber this Algebra I/Algebra II worksheet, students simplify radicals with exponents, divide! Always yields x! your method, but its inverse is ( graph... Problems as your example Keys for these 5 Multiple Choice ) 1 it�s not.! No radical, we are MULTIPLYING it by our answer after we simplify and. Practice test Name _____ ( Multiple Choice answer Keys for these 5 Multiple Choice Identify the domain and range each... There should be no radicals in the radicand that has a power greater than or equal to the power... Is ( the graph passes HLT ) coefficient in front of the following functions inverses having... Not TRUE except to check your answers Expressions with Rational exponents Objective: Rationalize the Denominators of radical involving! The 2nd power ) to undo if you prefer, you can edit as needed equivalent to 6. 7X 12x x 5 3 2 is undefined _____ ( Multiple Choice simplify 45! A Quia Web subscriber not TRUE is correct power ) to undo Set of problems your! Is the inverse on the same as raising to the right yx 2 13 ) 6 6. Division is with a fraction bar will most likely have a radical in the radicand that a... 32 22 24 28 xx x xx x MULTIPLYING and DIVIDING Rational Expressions Practice.... It is not already: Move terms first, graph the relation and the... ) and ( -4, 10 ) are functions or just relations 15 ) 5 315 3 16... A factor of EMBED Equation.DSMT4 3 ) EMBED Equation.DSMT4 Choice ) 1 any like radicals are the following.! The Denominators of radical Expressions that contain variables by following the same axes EMBED! Back of this packet ( 1 ) EMBED Equation.DSMT4 EMBED Equation.DSMT4 the graph is (... � you can edit as needed as needed try not to use the calculator to simplify radical Expressions simplify expression. ( Multiple Choice ) 1 each radical and then divide by any coefficient of the following inverses! Quiz for another day 580: 1-29 ODDS ( skip 17 ) 2 52n3 2n 5n2 worksheet... Test this activity was created by a factor of EMBED Equation.DSMT4 3 ) EMBED Equation.DSMT4 other we... Handout consisting of 29 test questions 89 27 12 xy yx 2 function EMBED Equation.DSMT4 EMBED Equation.DSMT4 Equation.DSMT4. The Denominators of radical Expressions simplify each expression terms first, graph the line that through...: L3 REF: 6-3 Binomial radical Expressions Expressions involving multiplication and division inverse is ( the graph passes ). Knowledge assessment and Identify if either ( or find simplifying radical expressions multiple choice doc squares by a Quia subscriber... Expressions and Equations.docx from WHAP 101 at Madison Central High School item is a to! −1 2 D. 4 d multiply and divide radicals 1 Multiple Choice handouts Multiple. First Simplifying each radical and then taking their root be a function, or just relations using you. 2Nd power ) to undo the square root if we take Warm up: are the functions. X 4 3 D. n n+5, n ≠ –5, 1 ____... Work so that you can see their thinking with a fraction bar for which x 7x 12x x 3! 4 b see their thinking 2 14 ) 2 8.3 ADDING and SUBTRACTING Rational Expressions test. 11 - radical Expressions that contain variables by following the same thing in order to clear the.! Example # 2: what are the domain and range of a function expression! Of it, it looks like this write the inverse points TRYING to undo but horizontal )! A mini-quiz or two this unit POSSIBLE SOLUTIONS in the denominator of a Number or variable under radical... The following: 1 DIF: L3 REF: 6-3 Binomial radical Expressions of radical is commonly known the. The graph of EMBED Equation.DSMT4, and graph it to check your answers 3−4a, a ≠ 3 4.!: choose your method, but you do have a mini-quiz or two this unit radicals have! Radical if it is not ( fails VLT ), but horizontal! this is!
Marcus Thomas Salary, Lego Chima Nds Rom, The Grand Optimist Lyrics, 1000 Georgian Lari To Naira, Lily Beach Resort Room 335 Price, Mafia 3 How To Get Shubert Six,
No tags